
Modules: Providing a Flexible
User Environment

John L. Furlani

June 29, 1991

ABSTRACT

Typically users initialize their environment when they log in by setting environment
information for every application they will reference during the session. The Modules package is
a database and set of scripts that simplify shell initialization and lets users easily modify their
environment during the session.

The Modules package lessens the burden of UNIX environment maintenance while providing a
mechanism for the dynamic manipulation of application environment changes as single
entities. Users not familiar with the UNIX environment benefit most from the single command
interface. The Module package assists system administrators with the documentation and
dissemination of information about new and changing applications.

This paper describes the motivations and concepts behind the Modules package design and
implementation. It discusses the problems with modifying the traditional user environment and
how the Modules package provides a solution to these problems. Both the user’s and the system
administrator’s viewpoint are described. This paper also presents the reader with a partial
implementation of the Modules package. Sample C Shell and Bourne Shell scripts with
explanations are used to describe the implementation. Finally, an example login session
contrasts the traditional user’s environment with one that uses the Modules package.
-

Introduction

Typically, when users invoke a shell, the

environment is initialized with the settings for every

application they might access during a login session.

This information is stored in a set of initialization

files in each user’s home directory. Over time, these

files can incur numerous and relatively complex

changes as applications move and new applications

become available. Since each user has his own

initialization files, keeping these files current with

system-wide application changes becomes difficult

for both the user and the system administrator. In

this model, the user often makes environment

changes during a login session by modifying the

initialization files and then re-initializing the shell.

The Modules package provides a way to simplify

this process.1

The Modules package is a set of scripts and

information files that provides a simple command

interface for modifying the environment. Each

module in the Modules package is a file containing

the information needed to initialize the environment

for a particular application (or any environment

information). From a user’s perspective, the package

supplies a single command with multiple arguments

that provides for the addition, change, and removal

1. CapitalizedModules refers to the package as a whole. Refer
ences to amodule file itself are uncapitalized. References to the
module(1) command use italics with the man page reference.
1

The Design of the Modules Package
of application environment information. From the

administrator’s point of view, the environment

information is documented and maintained in one

location with each module encapsulating one

application’s information. Thus, it is easier for the

system administrator to add new applications and

ensure that the necessary environment for the

application is correctly installed and maintained by

the end users.

The Design of the Modules Package

The first section describes the motivations

driving the design of the Modules package. The

second section presents an overview of the design.

Design Motivations

Help alleviate the burden of UNIX environment
maintenance for users.

The UNIX environment is cumbersome for even

experienced users. Users not familiar with UNIX are

both baffled and troubled by the complexity of

environment maintenance. The Modules package

attempts to ease this maintenance by encapsulating

environment information and providing a single

command for environment modification.

Ease the dissemination of information and documentation
of new software.

The amount of information an administrator

must convey about a new application can be large.

Many variables may need to be changed for each

new application. Because each module is

self-documenting, the information is readily

available for reference by users.

Make it simple to change the environment numerous times
during the login session.

The amount of effort involved with adding

environment information as applications are needed

stops users from managing their environment

dynamically. Using a new application requires

looking up the necessary environment modifications,

making the appropriate modifications, and finally

invoking the command. Thus, it is usually worth

initializing the environment with the information for

every application when the shell is invoked. But if

adding the environment for a new application is as

simple as typing a single command, the balance

turns in favor of adding to the environment just

before accessing a new application.

Decrease dependency on servers when the applications on
those servers are not needed.

When a directory is added to the search path, a

dependency on the server containing this directory is

added as well. If this server goes down, the user

must wait for the server to return even though, in the

case of an unnecessary directory, he doesn’t need

access to the directory to complete his work.

Manage the difficulties associated with frequently
switching between different application releases.

Switching between two releases of the same

software is simplified by making it easier to swap the

two applications’ environment information.

Design Overview

The Modules package should be simple to use.

Therefore, it employs a single command interface,

very similar to that of the sccs(1)[1] command. A

single command with the ability to provide help is

both easy to remember and simple to use.

For the Modules package to assist a system

administrator, it should save time spent maintaining

environments as well as installing and documenting

the use of new applications.

The package must be flexible enough to

accommodate any situation an application might

require. It must meet the user’s needs in different

ways. Some users will use the module(1) command to

manipulate most of their environment. Other users

will use it sparingly as an easy way to try new or

rarely used applications. In addition, the package

should permit experienced users to tailor it to their

needs.

Finally, the solution must be shell-independent.

The interface should be the same regardless of which

shell the user chooses.
2 Modules: Providing a Flexible User Environment

Problems with Traditional Shell Initialization
Problems with Traditional Shell
Initialization

This section describes some of the difficulties

with traditional shell initialization as viewed by the

user and by the system administrator.

The User’s Viewpoint

Maintaining shell start-up files can be difficult

and frustrating for the user because he lacks interest

or UNIX® knowledge. Since modification is generally

required when a new application is installed,

maintaining start-up files can be demanding and

time consuming in very dynamic or large UNIX®

environments.

When shell start-up files are used, the

environment can become cluttered with unnecessary

information. Information for every application,

whether or not it will actually be referenced during

the current session, is loaded into the shell. For the

user to execute applications at the command line

without using full pathnames, the search path could

be very long.

When using an automounter[2], the system not

only searches a longer path, but must remount

infrequently referenced directories to search them. In

addition, if a directory in the search path is on a

server that goes down, the shell will hang trying to

search that directory. Thus, the time needed to detect

a “command not found” or to find programs toward

the end of the search path is drastically increased.

Shells that have path caching help this problem

immensely, but a number of shells and users do not

have or use path caching. It is best if a small path

containing only the most used directories is set at

initialization and supplemented just before a new

application is used.

Switching between different versions of an

application is usually difficult “on the fly.” First, the

user must know which environment variables to

reset and then must enter the explicit shell

commands to change the variables. Finally, the user

must modify the search path to remove the old path

and to add the new path. This is a cumbersome and

time consuming process that restricts the flexibility

of changing between different software versions.

Accessing a new application is difficult when it

requires a change in the user’s environment. If the

application is for temporary use, the user accesses

the application by changing the environment in the

current shell. If it’s a long-term addition to the user’s

set of applications, the user edits the shell

initialization files and the shell is re-initialized.

Novice users often don’t know how or don’t want to

know how to modify their environment to use the

new application.

The System Administrator’s Viewpoint

A system administrator currently announces the

installation of a new application via e-mail or a note

in /etc/motd. Usually, the notice contains a full

description of the application and the environment

variables that must be set to use the new application.

Some users do not understand what they really need

to do to use an application. This, in turn, causes

numerous requests to a system administrator. Novice

users often need a system administrator to help them

modify their start-up files.

At most sites, a logfile or database is maintained

containing the descriptions and quirks of each

application so that the user can set up his

environment to use an application. Maintaining such

a logfile can be time consuming as it can become

very large.

The Modules Package Provides a
Solution

The User’s Viewpoint

Although shell start-up files are still necessary,

maintaining them is easier with the Modules

package. The user is provided with two options:

modify the start-up files directly, or use the module(1)
command to modify them.

Changing start-up files is simpler with the

Modules package. The user only has to add new

arguments to, or remove them from, the module(1)
Modules: Providing a Flexible User Environment 3

Shell Wrappers and Modules
command in his start-up file to add or remove an

application’s environment. Or, if the user prefers, he

can use the module(1) command to add module

names to, or remove such names from, his start-up

file’s module(1) command.

A clean environment is readily maintained since

the Modules package makes it easy to dynamically

modify the environment. A minimum of

environment information is initialized at start-up,

and an application’s environment is added only

when needed. Response time is improved because

search paths are much shorter on average.

The Modules package is optimum for the

windowing environment under which many UNIX

users work. For example, a user only loads the

window system module during the login

initialization. Then, in a shell window, the user uses

the module(1) command to initialize the environment

just prior to accessing a new application.

If the path to an application changes, the change

will be masked by the Modules package. For

example, a user loads a module named ‘openwin’ to

use OpenWindows[3] even if its access path has

changed. For the user, no environment or start-up

file modification is required.

To switch between different releases, the user

simply changes predefined modules. The old

module is swapped out, and the new one is loaded in

its place, even during the login session.

The Modules package will help inexperienced

UNIX users manage their environment. They must

learn a single command for manipulating their

environment. This is opposed to having to

thoroughly understand the quirks of setting a UNIX

environment.

The System Administrator’s Viewpoint

The Modules package eases the dissemination of

information about a newly installed application: only

the module name must be announced. If users want

to use the new application, they use the module(1)
command to add the announced module. Any users

who don’t use the Modules package can acquire the

information needed to set their environment from

the module file itself.

Each module is self-documenting. Users either

access this information via the module(1) display

command or view the module file itself. In general, a

logfile or database still needs to be maintained, but

only the module name is listed for each application.

Thus, when a user wants to use an application, the

database references a module name that contains the

current environment information. The user either

loads this module directly or gets the environment

information from the module and manually

incorporates it into the environment.

Shell Wrappers and Modules

Shell wrapper scripts setup environment

variables for a certain application when a command

for that application is invoked. For each application,

the system administrator creates a wrapper script

and a symbolic link to the script for each command

in the application. The Modules package can

augment a wrapper script scheme or be used in place

of wrapper scripts.

With wrapper scripts, users still add the

directory containing the symbolic links to their

search path in order to use the application. In this

case, the Modules package augments the wrapper

scheme by helping the user manage the search path.

One solution for managing the search path is

creating a directory of symbolic links to all of the

wrapper scripts. In this case, the user only adds one

directory to his search path to access every

application. Moving an application requires that

every symbolic link for that application change.

When many applications are installed, this directory

can quickly become overwhelming and

unmanageable. Documenting and finding programs

in such a directory is difficult and often not very

clean.

The Modules package provides the user with a

lot of flexibility by differentiating between user and

system module files. Like wrapper scripts, the
4 Modules: Providing a Flexible User Environment

The Modules Package Implementation
Modules package can encapsulate environment

details from the user.

The Modules Package Implementation

The Modules package has been implemented for

both the C Shell and Bourne Shell dialects. This

section describes some of the implementation details.

Modules Initialization

The Modules package is initialized when a user

sources a site-wide accessible initialization script.

This file is shell dependent and is usually done in a

user’s .cshrc or .profile upon each shell invocation.

This Modules initialization script defines a few

environment variables. MODULESHOME is the

directory containing the master module file and the

master command scripts. MODULEPATH is a standard

path variable that is searched to find module files.

MODULESHOME should always be a part of this path.

The _loaded_modules variable contains a space

separated list of every module that has been loaded.

All of these variables are exported so that the shell’s

children will have the same information and be able

to keep track of currently loaded modules.

This initialization script sets up the module(1)
command. This command is an alias or a function

depending upon which the shell supports

(see Figure 1).

FIGURE 1. module(1) Command Initialization

Environment Modification

Because a process is unable to modify the

environment of its parent, the Modules package

sources scripts into the current shell.

The Modules package should not alter any part

of the environment besides the variables

documented in the init-script or the module files

themselves. When a script is sourced into the current

shell, it has the potential to change existing user

variables. This “feature” permits the Modules

package to work, but it presents a pitfall that the

package must take into account. The main concern is

the module(1) command because it uses a large

number of variables to implement its sub-

commands.

A couple of precautions have been taken to avert

the possibility of variables being changed or

destroyed by the module(1) command. The first

precaution is the choice of variable names used by

the module(1) command. All of the names are

proceeded with an underscore and are all lowercase.

The use of underscores should stop most variable

conflicts. It does, however, leave room for a user

variable to be changed by the module(1) command.

So, a check for possible variable conflicts is made

when the bulk of the script is sourced. If a conflict

arises, the user is notified.

The problem of changing existing variables

could be eliminated by running module(1) as a

subshell and sourcing the return values. I found this

has an unacceptable response time for the problem

being addressed. If users run into variable conflicts,

they can set an option telling the module(1) command

to run the script in a subshell and source the script’s

output (this code is not in Figure 1).

Since the Modules package is designed to

abstract environment information from the user, it

must be concerned with environment dependencies

and conflicts between different applications and

different versions of the same application. For

example, the environment for two versions of the

same application should not be loaded at the same

time. Along the same lines, some applications (like

Sun’s AnswerBook[4]) are dependent upon other

applications (OpenWindows[3]). Possible conflicts

##
module(1) User Command as Function
##
module() {
 _module_argv="$*"
 . $MODULESHOME/.module.sh
 unset _module_argv
}

Modules: Providing a Flexible User Environment 5

Implementation of Internal Module File Functions
and dependencies are put into the module files

themselves and detected by the module(1) command.

Shell Independence

The Modules package is shell-independent

because the interface is independent of the currently

executing shell. To ease administration, the module

files are shell independent as well. Thus, only one

copy of an application’s environment information is

maintained.

A number of functions or aliases are set up by

the module(1) command. Each module calls these

functions to accomplish specific, well defined tasks.

For example, the _set_environ task is responsible for

setting an environment variable. This is a line from

an “openwin” module file.

_set_environ OPENWINHOME /depot/openwin

Here, OPENWINHOME is initialized to /depot/

openwin[5].

System Module Files and User Module Files

Through the MODULEPATH environment variable,

users can specify module directories to be searched

before or after the site-wide directory. Thus, a

distinction is made between “system modules” and

“user modules.”

System modules are maintained by the system

administrator and contain the default initialization

information for packages that are installed on the

network. User modules, created by the user, are

either derivatives of the site-wide modules or are

new modules that are specific to the user’s needs.

This arrangement provides the user with the same

power as the system-wide modules provide to easily

change the environment “on the fly.”

Implementation of Internal Module File
Functions

This is the set of internal functions called by the

module files themselves. These functions change

paths and set variables, aliases, and dependencies.

prepend*path and _append_*path

Sometimes an application’s path should be

prepended to a search path. Other times it should be

appended to a search path. The Modules package

makes this distinction in the application’s module

file. The path modification functions are currently

implemented to modify the PATH, MANPATH,

MODULEPATH, and LD_LIBRARY_PATH environment

variables. See Figure 2 for an example of how the alias
and function to append the MANPATH variable is
implemented.

FIGURE 2. _append_manpath Alias and Function

rm*path

The _rm_path functions remove the directory,

given as an argument, from their associated path. As

with the append and prepend path functions, they’re

currently defined for the PATH, MANPATH, MODULEPATH,

and LD_LIBRARY_PATH environment variables.

Currently, awk(1)[?] does most of the work of

removing and recreating the path.

When the user requests that a module be

removed, the _rm_flag is set in a higher level

function. Then, the module is reloaded with this flag

set. Thus, every function that was called when the

module was loaded is called again with the _rm_flag
set (see Figure 2). The same functions that set up the

environment now call their associated _rm_*path
function to remove their environment information.

Bourne Shell Function:

_append_manpath() {
if ["$_rm_flag:-X" = "X"]; then

_rm_manpath $1
else

MANPATH="$MANPATH":"$1";
export MANPATH;

fi
}

C Shell Alias:

alias _append_manpath
'if($?_rm_flag) eval _rm_manpath \!:1;
if(! $?_rm_flag) setenv MANPATH
$MANPATH":"\!:1'
6 Modules: Providing a Flexible User Environment

Implementation of Internal Module File Functions
See Figure 3 for an example of how the function to remove
a directory from the MANPATH variable is implemented.

FIGURE 3. _rm_manpath Function and awk Script

_set_environ

This function is responsible for setting and

clearing environment variables. The code gets more

complex when removing environment variables.

Since environment variables are often used to

define paths to other directories, variables and paths

defined later in a module must be able to reference

these variables even as they are removed. The best

way to describe this problem is with an example

module file (see Figure 4).

FIGURE 4. OpenWindows module File

Here the first variable set is the location of

OpenWindows (OPENWINHOME). This variable is used

to define the path locations as well. If the variable

were removed from the environment before the

paths were removed, it would be impossible to

remove the paths. So, environment variables are not

actually cleared from the environment until after the

module has been removed. Thus, _set_environ simply

adds any environment variables to a list. Upon

completion of reading the module file, the elements

are removed from the environment. See Figure 5 for an
example of how the alias and function defined to set and
unset environment variables are implemented.

FIGURE 5. _set_environ Function and Alias

_prereq and _conflict

Two functions were created to manage conflicts

and dependencies with other module files. The

_prereq function is a list of modules the calling

module must have loaded to run. Similarly, the

_conflict function is a list of modules the calling

module has conflicts with. If more than one module

is listed for these commands, it is treated as an ORed

list. Multiple calls can be used to get an ANDing

effect.

For example, AnswerBook needs OpenWindows

loaded to run. So, it defines the openwin (or

openwin-v3) module as a prerequisite. A conflicting

case would be OpenWindows Version 2.0 with

As Bourne Shell Function:

_rm_manpath() {
MANPATH=`echo $MANPATH |

awk -F: 'BEGIN {p=0}
{

for(i=1;i<=NF;i++)
{

if($i!="'$1'"){
if(p) {printf ":"}
p = 1;
printf "%s", $i

}
}

}'`
 export MANPATH;
}

##
OpenWindows Version 2.0
##
_set_environ OPENWINHOME /depot/openwin
_set_environ DISPLAY `hostname`:0.0
_prepend_newpath $OPENWINHOME/bin/xview
_prepend_newpath $OPENWINHOME/bin
_prepend_manpath $OPENWINHOME/man
_prepend_ldpath $OPENWINHOME/lib

Bourne Shell Function

_set_environ() {
 if ["$_rm_flag:-X" = "X"]; then
 _unset_list="$_unset_list $1"
 else
 eval $1="$2"; export $1;
 fi
}

C Shell Alias

alias _set_environ '
if($?_rm_flag)

set _unsetenv_list =
($_unsetenv_list \!:1);

if(! $?_rm_flag) setenv \!:1 \!:2'
Modules: Providing a Flexible User Environment 7

Implementation of the module(1) Command
OpenWindows Version 3.0. These two modules

should not be loaded at the same time. So, each one

defines the other as a conflict. See Figure 6 for an
example of how the function for conflict management is
defined.

FIGURE 6. _conflict Function

Implementation of the module(1)
Command

Each invocation of module(1) sources a site-wide

script that actually implements the command.

Arguments are passed to the module(1) command

using the _module_argv variable (see Figure 1).

The first argument designates the sub-command

the module(1) command is to execute. Valid

arguments are as follows:

■ Load or Add

■ Remove or Erase

■ Switch or Change

■ Show or Display

■ Initadd

■ Initrm

■ List

■ Available

■ Help

Loading Modules

Loading modules is done by the _add_module
internal function. This function takes any number of

arguments and attempts to load each one as a

module. It traverses the argument list first verifying

that a listed module isn’t loaded already. If it is, the

function prints an error and moves on to the next

name in the argument list (see Figure 7).

FIGURE 7. _add_module() Argument Verification

If the module is not loaded, _add_module begins

looking for the module by searching each directory

specified in the MODULEPATH variable. Once

found, the module is sourced, the module name is

_conflict() {
if ["$_rm_flag:-X" = "X"]; then

return;
fi

_conflict_loaded=0
for _con in $*; do

for _mod in $_loaded_modules; do
if ["$_mod" = "$_con"]; then

_conflict_loaded=$_mod
fi

done
done

if [$_conflict_loaded != 0]; then
echo "ERROR: Module conflict"

fi
unset _conflict_loaded

}

_add_module() {
if [$# -lt 1]; then

echo "ERROR: More arguments"
return

fi

for mod in $*; do
_found=0; _cur_module=$mod;
for chkmod in $_loaded_modules; do
if [$mod = $chkmod]; then

_found=1
break

fi
done

if [$_found -eq 1]; then
echo "ERROR: Module is already loaded"
continue

fi
8 Modules: Providing a Flexible User Environment

Implementation of the module(1) Command
appended to the _loaded_modules variable, and if

there are any other arguments, the load process

begins anew (see Figure 8).

FIGURE 8. _add_module() Traverse MODULEPATH and
Load Module

Removing Modules

Removing a module is accomplished by using

the _rm_module internal function, which is very

similar to the _add_module function. Any number of

arguments can be passed to the _rm_module function.

First, each argument is checked to verify that the

module is actually loaded (same code as in Figure 7

except the final if statement indicates an error if the

module is not loaded). If a module is loaded, the

_rm_flag is set and the MODULEPATH variable is

searched. Once a module is found, it is sourced (see

Figure 9).

FIGURE 9. _rm_module() Traverse MODULEPATH and
Load Module

The same functions that are used in loading a

module are used to remove modules. When one of

the functions detects that the _rm_flag is set, it

removes its corresponding piece of environment

instead of adding it (see Figures 2 and 3). Note that

after the module file has been sourced, each variable

in the _unset_list is unset.

Switching Modules

Although this function has not been fully

implemented, I will describe it here. Only modules

that define themselves as compatible with another

module can be switched. The compatibility

information is kept in the module file. If a module

can be switched with another module, it lists that

other module via the _switch function.

Switchable modules are very similar in that their

environments match one another and their modules

follow the same format. The variables that have to be

reset are the same, and the search path changes are

the same as well.

for dir in $MODULEPATH; do
if [-f $dir/$mod]; then

echo "Loading $dir/$mod"
. $dir/$mod

if ["${_load_error:-NotSet" =
"NotSet"]; then

_loaded_modules=
"$_loaded_modules $mod"

export _loaded_modules
unset _load_error

fi

_found=1
break
fi

done
if [$_found -ne 1]; then

echo "ERROR: Module not found"
fi

done
}

_rm_flag=
for dir in $MODULEPATH; do

if [-f $dir/$mod]; then
echo "Removing $dir/$mod"
. $dir/$mod

_loaded_modules=
`echo $_loaded_modules | sed s/$mod//`

export _loaded_modules
_found=1
break

fi
done

if [$_found -ne 1]; then
echo "ERROR: Module not found"

fi

for env in $_unset_list; do
unset $env

done
Modules: Providing a Flexible User Environment 9

Example Sessions
The difference between switching two modules

and the process of removing a loaded one and

loading a new one is that the location of a search

path entry does not change. The append and

prepend functions are used when removing and

loading module files. This process has the possibility

of altering a portion of the search path in relation to

other entries.

Although this sounds restrictive, it is often very

useful because most module switching involves

different versions of the same program.

Displaying Modules

The _display_module internal function

implements the user display and show sub-

commands. If no arguments are provided, it displays

information about every loaded module. Otherwise,

only the modules named as arguments are

displayed. An awk(1) script is used to convert the

information contained in the module file to output

that is visually pleasing to the user.

Changing User Initialization Files

The initadd and initrm sub-commands help the

user add modules to and remove modules from their

shell initialization files. The initialization file is

searched for a comment line placed there by the

module(1) command. Located immediately after this

comment line is a line invoking the module(1)
command. It is this line that is changed according to

the list of modules given to the initadd and initrm
request. If a comment line is not located in the

initialization file and the user is requesting that a

module be added, the comment line and the

module(1) command line is appended to the user’s

initialization file.

Listing Modules

The _list_modules function simply prints out the

current value of the _loaded_modules variable.

Available Modules

Each directory in the MODULEPATH variable is

listed using the UNIX ls(1)[?] command by the

_avail_modules function (see Figure 10).

FIGURE 10. _list_modules() and _avail_modules()
Functions

Help for Modules

Two levels of help are provided. Without any

arguments, the module(1) command lists the available

sub-commands. With ‘help’ as the only argument, it

provides more complete description of the Modules

package. If a second argument, the name of a sub-

command, is provided, the module(1) command

displays help about the sub-command.

Example Sessions

Contrast Conventional Style with Modules Style

The examples in Figures 11 and 12 depict how

the same environment modifications are

accomplished with and without using the Modules

package. Specifically, the examples show how a user

would switch from using OpenWindows Version 2.0

to a Development Version of OpenWindows Version

3.0. The keystrokes the user actually types are in

bold. Notice the difference in effort needed to switch

between the two window systems. Also notice the

difference in the length of the search path variables.

_list_modules() {
if ["$_loaded_modules" =""]; then

echo "No Modules Loaded"
else

echo "Loaded: $_loaded_modules"
fi

}

_avail_modules() {
for dir in $MODULEPATH; do

echo $dir":"
(cd $dir; ls)

done
}

10 Modules: Providing a Flexible User Environment

Future Work
FIGURE 11. Conventional Style

FIGURE 12. Modules Style

A More Complex Modules Example

A few more module(1) commands are

demonstrated in Figure 13. Once the user logs in, a

check is made of what modules are currently available.

Then, the ‘lang’ module is displayed to find out what

the module does. Notice that the PATH environment

variable is changed as the module display indicates.

The ‘answerbook’ module is displayed showing how

prerequisites might be used. In this example,

answerbook must have either the ‘openwin’ or

‘openwin-v3’ module loaded before it will load.

Finally, the ‘answerbook’ module is loaded and the

program is started.

system login: jlf
++++++++ CSH Login ++++++++
jlf@system% echo $PATH
/depot/lang:/depot/openwin/bin:
/depot/openwin/bin/xview:/usr/local/bin:
/usr/bin:/usr/ucb:/usr/etc:.:
/depot/frame/bin:/depot/sunvision/bin:
/depot/TeX/bin
jlf@system% setenv OPENWINHOME /depot/openwin-v3
jlf@system% setenv PATH /depot/lang:
/depot/openwin-v3/bin:/depot/openwin-v3/bin/xview:
/usr/local/bin:/usr/bin:/usr/ucb:/usr/etc:.:
/depot/frame/bin:/depot/sunvision/bin:
/depot/TeX/bin
jlf@system% setenv LD_LIBRARY_PATH
/depot/lang/SC1.0:/depot/openwin-v3/lib:/usr/lib
jlf@system% setenv MANPATH /depot/lang/man:
/depot/openwin-v3/man:/depot/sunvision/man:
/depot/TeX/man
jlf@system% openwin

system login: jlf
++++++++ CSH Login ++++++++
Loading /site/Modules/openwin
jlf@system% echo $PATH
/depot/openwin/bin:/depot/openwin/bin/xview:
/usr/local/bin:/usr/bin:/usr/ucb:/usr/etc:.
jlf@system% module rm openwin
Removing /site/Modules/openwin
jlf@system% module add openwin-v3
Loading /site/Modules/openwin-v3
jlf@system% openwin

F

F

t

t

b

s

i

c

c

b

s

m

s
+
L
j
/
X
X
a
d
f
f
j
+
U
P
P
P
j
/
/
j
L
j
/
/
/
j
+
A
P
A
j
L
j

Modules: Providing a Flexible User Environment
IGURE 13. Complex Modules Example

uture Work

Having the Modules package as a set of scripts

hat are sourced into an existing shell helps makes

he interface shell independent. However, it would

e best for performance and cleanliness to have

upport for the Modules package built into the shell

tself. The module commands could be more

omplex without losing any performance over the

urrent version.

Currently, conventional style search paths can be

uilt in an order that doesn’t represent a logical

earch structure. Users are responsible for

aintaining the order of their paths with little or no

ystem login: jlf
+++++++ CSH Login ++++++++
oading /site/Modules/openwin

lf@system% module avail
site/Modules:
11@ init-csh openwin tex
11R4 init-sh openwin-v3 vx-devel
nswerbook lang saber xgl
os local sunvision

rame lotus sunvision-devel
rame-ol mh taac-devel
lf@system% module show lang
+++++++ (/site/Modules/lang Module) ++++++++
nbundled Languages
repend PATH: /depot/lang
repend MANPATH: /depot/lang/man
repend LD_LIBRARY_PATH: /depot/lang/SC1.0

lf@system% echo $PATH
depot/openwin/bin:/depot/openwin/bin/xview:
usr/local/bin:/usr/bin:/usr/ucb:/usr/etc:.
lf@system% module add lang
oading /site/Modules/lang

lf@system% echo $PATH
depot/lang:/depot/openwin/bin:
depot/openwin/bin/xview:/usr/local/bin:
usr/bin:/usr/ucb:/usr/etc:.
lf@system% module show answerbook
++++ (/site/Modules/answerbook Module) +++++
nswerbook Version 1.0
rerequisites(ORed): openwin openwin-v3
ppend PATH: /depot/answerbook

lf@system% module add answerbook
oading /site/Modules/answerbook

lf@system% answerbook
11

Results, Performance Notes
help. The Modules package can provide the user

with the information he needs to build a logical

search path with existing modules.

Work is in progress to increase the grammar

available in the module file. Syntax permitting if-else

statements and path ordering are two examples of

new syntax not described in this paper.

Finally, more options are under development to

provide users with even greater control over how

their environment is constructed by the Modules

package. In some cases, users don’t want a variable

modified when loading a certain module file. For

example, if the OpenWindows[3] dynamic libraries

are already cached using ldconfig(8)[1] the

LD_LIBRARY_PATH should not be modified when

loading the “openwin” module file. Other

configuration and control options are being added

for more experienced users as well.

Results, Performance Notes

The Modules package is quite new and is still

under development. Only a few of our users have

begun working in the Modules’ environment. They

have been very pleased with the package and the

benefits it provides.

Currently, it takes a second or two to load a

module into the current shell. In an effort to improve

this performance, it is possible for the user to specify

that the internal functions remain resident from one

module(1) command to the next. This provides a

marked improvement in speed since the functions

are not being completely redefined upon every

invocation.

Summary

The Modules package provides both the novice

and the experienced UNIX user with a clean

interface to the environment. This interface enables

the user to easily add, change, and remove

application environments dynamically.

John L. Furlani graduated from the University of

South Carolina with a BS in Electrical and Computer

Engineering. he worked as a system administrator at

both USC and the Naval Research Laboratory in

Washington, D.C. during his college years. Upon

graduation, John joined Sun Microsystems

Incorporated as the system administrator for Sun’s

Research Triangle Park Facility in North Carolina.

Reach him at Sun via U.S. Mail at Sun Microsystems

Inc., P.O. Box 13447, Research Triangle Park, NC

27709-13447. Reach him via electronic mail at

sun!sunpix!jlf@uunet.uu.net or via the internet at

John.Furlani@East.Sun.COM

Acknowledgments

Ken Manheimer and Don Libes at the National

Institute of Standards and Technology deserve

special thanks for their help and ideas toward this

paper and some design considerations. Maureen

Chew with Sun Microsystems provided me with a

test environment and many ideas on how to improve

Modules. There are many others that deserve thanks

but too many to list here -- thanks to everyone that

helped.

References

[1] Sun Microsystems Incorporated, SunOS Reference
Manual.

[2] Sun Microsystems Incorporated, “Using the NFS

Automounter”, System and Network
Administration, Chapter 15.

[3] Sun Microsystems Incorporated, OpenWindows
Version 2 Reference Manual.

[4] Sun Microsystems Incorporated, Using the Sun
System Software Answerbook.

[5] Manheimer, Warsaw, Clark, Rowe, “The Depot:

A Framework for Sharing Software Installation

Across Organization and UNIX Platform

Boundaries”, USENIX Large Installation System
Administration IV Conference Proceedings,
October 1990, p. 37-76.
12 Modules: Providing a Flexible User Environment

	Modules: Providing a Flexible User Environment
	John L. Furlani
	June 29, 1991
	ABSTRACT
	Typically users initialize their environment when they log in by setting environment information ...
	The Modules package lessens the burden of UNIX environment maintenance while providing a mechanis...
	This paper describes the motivations and concepts behind the Modules package design and implement...
	Introduction
	The Design of the Modules Package
	Design Motivations
	Design Overview

	Problems with Traditional Shell Initialization
	The User’s Viewpoint
	The System Administrator’s Viewpoint

	The Modules Package Provides a Solution
	The User’s Viewpoint
	The System Administrator’s Viewpoint

	Shell Wrappers and Modules
	The Modules Package Implementation
	Modules Initialization
	FIGURE 1. module(1) Command Initialization

	Environment Modification
	Shell Independence
	System Module Files and User Module Files

	Implementation of Internal Module File Functions
	prepend*path and _append_*path
	FIGURE 2. _append_manpath Alias and Function

	rm*path
	FIGURE 3. _rm_manpath Function and awk Script

	_set_environ
	FIGURE 4. OpenWindows module File
	FIGURE 5. _set_environ Function and Alias

	_prereq and _conflict
	FIGURE 6. _conflict Function

	Implementation of the module(1) Command
	Loading Modules
	FIGURE 7. _add_module() Argument Verification
	FIGURE 8. _add_module() Traverse MODULEPATH and Load Module

	Removing Modules
	FIGURE 9. _rm_module() Traverse MODULEPATH and Load Module

	Switching Modules
	Displaying Modules
	Changing User Initialization Files
	Listing Modules
	Available Modules
	FIGURE 10. _list_modules() and _avail_modules() Functions

	Help for Modules

	Example Sessions
	Contrast Conventional Style with Modules Style
	FIGURE 11. Conventional Style
	FIGURE 12. Modules Style

	A More Complex Modules Example
	FIGURE 13. Complex Modules Example

	Future Work
	Results, Performance Notes
	Summary
	Acknowledgments
	References

