The MPBench Report

Philip J. Mucci

Kevin London

John Thurman
mucci@cs.utk.edu
london@cs.utk.edu
thurman@cs.utk.edu

November 1998

1 Introduction

MPBench is a benchmark to evaluate the performance of MPI on MPP’s and clusters of
workstations. It uses a flexible and portable framework to allow benchmarking of any message
passing layer with similar send and receive semantics. It generates two types of reports,
consisting of the raw data files and Postscript graphs. No interpretation or analysis of the
data is performed, it is left entirely up to the user.

2 How it works

MPBench currently tests eight different MPI calls. The following functions are measured.
The default number of processes used can be set in make.def.



Benchmark Units # Processes
Bandwidth Megabytes/sec 2
Roundtrip Transactions/sec 2
Application Latency Microseconds 2
Broadcast Megabytes/sec make.def value
Reduce Megabytes/sec make.def value
AllReduce Megabytes/sec make.def value
Bidirectional Bandwidth | Megabytes/sec 2
All-to-All Megabytes/sec make.def value

All tests are timed in the following manner.

1. Set up the test.

2. Start the timer.

3. Loop of operations over the message size as a power of two and the iteration count.
4. Verify that those operations have completed.

5. Stop the timer.

6. Compute the appropriate metric.

By default, MPBench measures messages from 4 bytes to 26 bytes, in powers of two
for 100 iterations. Each test is run a single time before testing to allow for cache setup and
routing. The cache is then flushed before each repetition and before each new message size is
tested. The cache is not flushed however betwen iterations on the same message size, which
are averaged.

In MPBench, we avoid calling the timer around every operation, because this often results
in the faulty reporting of data. Some of these operations on MPP’s take so little time, that the
accuracy and latency of accessing the system’s clock would significantly affect the reported
data. Thus it is only appropriate that we perform our timing operations outside the loop.
Some MPP’s and workstations have the capability to access the system’s timer registers, but
this is not portable and would introduce unnecessary complexity into the code to compensate
for situations where the timing routines were not efficient.

For simplicity purposes, we will refer to two different types of tasks in MPBench, the
master of which there is only one, and the slaves of which their may be any number. The
point-to-point tests only use two tasks, a master and a slave. The other tests run with any
number of slaves, the default being sixteen.



MPBench averages performance over a number of iterations. The user should be aware
that MPBench will use a lower number of iterations than the one specified for certain sit-
uations. This should not effect the accuracy of the results, as the iteration count is only
changed when the message lengths are prohibitively large.

It should be noted that cachebench does not dictate the placement of slave tasks. This
can cause the user to make false claims about the performance of distributed multiprocessors
like the Origin 2000. MPBench measures point-to-point performance on MPI jobs with 2
tasks. For systems like the Origin, this means both tasks will be running on the same physical
board and their communication performance will largely be dominated by the speed at which
they can copy memory. The next version of MPBench will include the ability to measure
processors that are logically farther away from the master.

2.1 Notes on MPI

There are many different send and receive calls in MPI each with different semantics for
usage and completion. Here we focus on the default mode of sending. This means we are
not using any nonblocking or immediate communication calls. Each MPI implementation
handles the default mode a bit differently, but the algorithm is usually a derivative of the
following.

send first chunk of message
if message is larger than size N
wait for reply and destination address Y
send rest of message directly to address Y
else
if more to send
send rest of message
endif

MPI does this to avoid unnecessary copies of the data, which usually dominates the cost
of any communication layer. The receiving process will buffer a limited amount of data before
informing the sender of the destination address in the application. This way, a large message
is received directly into the application’s data structure rather than being held in temporary
storage like with PVM. The problem with this is that for large messages, sends cannot
complete before their corresponding receives. This introduces possibly synchronization
and portability problems.



2.2 Bandwidth

MPBench measures bandwidth with a doubly nested loop. The outer loop varies the mes-
sage size, and the inner loop measures the send operation over the iteration count. After
the iteration count is reached, the slave process acknowledges the data it has received by
sending a four byte message back to the master. This informs the sender when the slaves
have completely finished receiving their data and are ready to proceed. This is necessary,
because the send on the master may complete before the matching receive does on the slave.
This exchange does introduce additional overhead, but given a large iteration count, its effect
is minimal.

The master’s pseudo code for this test is as follows:

do over all message sizes
start timer
do over iteration count
send (message size)
recv(4)
stop timer

The slaves’ pseudo code is as follows:

do over all message sizes
start timer
do over iteration count
recv(message size)
send (4)
stop timer

2.3 Bidirectional Bandwidth

MPBench measures bidirectional bandwidth with a doubly nested loop. The outer loop
varies the message size, and the inner loop measures the send operation over the iteration
count. Both processes execute a non-blocking receive, then a non-blocking send, and then a
wait for each iteration. The next iteration is prevented from proceeding until the previous
one is finished by the MPI Waitall() call, which will not allow execution to continue until
both messages have been completed.

The code for this test is as follows:



do over all message sizes
start timer
do over iteration count
immediate (nonblocking) receive(message size)
immediate (nonblocking) send(message size)
wait until messages on both ends have been received
stop timer

2.4 Roundtrip

Roundtrip times are measured in much the same way as bandwidth, except that, the slave
process, after receiving the message, echoes it back to the master. This benchmark is often
referred to as ping-pong. Here our metric is transactions per second, which is a common
metric for database and server applications. No acknowledgment is needed with this test as
it is implicit given its semantics.



The master’s pseudo code for this test is as follows:

do over all message sizes
start timer
do over iteration count
send(message size)
recv(message size)
stop timer

The slaves’ pseudo code is as follows:

do over all message sizes
start timer
do over iteration count
recv(message size)
send(message size)
stop timer

2.5 Application Latency

Application latency is something relatively unique to MPBench. This benchmark can prop-
erly be described as one that measures the time for an application to issue a send and
continue computing. The results for this test vary greatly given how the message passing
layer is implemented. For example, PVM will buffer all messages for transmission, regardless
of whether or not the remote node is ready to receive the data. MPI on the other hand,
will not buffer messages over a certain size, and thus will block until the remote process has
executed some form of a receive. This benchmark is the same as bandwidth except that
we do not acknowledge the data and we report our results in units of time.

The master’s pseudo code for this test is as follows:

do over all message sizes
start timer
do over iteration count
send (message size)
stop timer

The slaves’ pseudo code is as follows:



do over all message sizes
start timer
do over iteration count
recv(message size)
stop timer

2.6 Broadcast and Reduce

The two functions are also very heavily used in many parallel applications. Essentially these
operations are mirror images of one another, the different being that reduce reveres the di-
rection of communication and performs some computation with the data during intermediate
steps. Both of these benchmarks return the number of megabytes per second computed from
the iteration count and the length argument given to function call.

Here is the pseudo code for both the master and the slave:

do over all message sizes
start timer
do over iteration count
reduce or broadcast(message size)
stop timer

2.7 AllReduce

AllReduce is a derivative of an all-to-all communication, where every process has data for
every other. While this operation could easily be implemented with a reduce followed by a
broadcast, that would be highly inefficient for large message sizes. The PVM version of this
test does this exactly, plus an additional barrier call. The goal of including this benchmark
is to spot poor implementations so that the application engineer might be able to restructure
his communication.

Here is the pseudo code for both the master and the slave:

do over all message sizes
start timer
do over iteration count
allreduce(message size)
stop timer



2.8 All-to-all

MPBench measures a kind of round-robin communication among multiple processes. The
outer loop varies the message size, and the inner loop measures the send operation over the
iteration count. Each process sends a message of the size of the total message size divided
by the number of processes to every other process.

The code for this test is as follows:

do over all message sizes
start timer
do over iteration count
all-to-all(message size)
stop timer

3 Using MPBench

3.1 Obtain the Distribution

MPBench is now found in the LLCbench distribution. The latest release of LLCbench can
always be found through the original author’s homepage at
http://www.cs.utk.edu/~mucci

at its home page at

http://www.cs.utk.edu/~thurman/llcbench

or via FTP at

ftp://cs.utk.edu/ thurman/pub/llcbench.tar.gz.

Now unpack the installation using gzip and tar.

kiwi> gzip -dc llcbench.tar.gz | tar xvf -
kiwi> cd 1llcbench

kiwi> 1s
Makefile cachebench/ index.html  mpbench/ sys.def@
blasbench/  conf/ make .def pix/



3.2 Build the Distribution

First we must configure the build for our machine, OS and MPI libraries. All configurations
support the reference MPI if available. Before configuration make with no arguments lists
the possible targets.

kiwi> make
Please use one of the following targets:

solaris sunosb

sun sunos4

sgi-o2k o2k

linux-mpich

linux-lam

alpha

t3e

ppc ibm-ppc

pow2 ibm-pow2

reconfig (to bring this menu up again)

Configure the build. Here, we are on a Solaris workstation.
kiwi> make solaris

1n -s conf/sys.solaris sys.def

MPBench’s default runtime variable values are contained in the file make.def and may
be modified there. Also examine the sys.def file to ensure proper compiler flags and paths
to the MPI libraries.

Now type make to get options for building a benchmark.

kiwi> make
Please use one of the following targets:

For all three : bench, run, graphs
For Blasbench : blas-bench, blas-run, blas-graphs

For Cachebench: cache-bench, cache-run, cache-graphs
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For MPbench : mp-bench, mp-run mp-graphs

kiwi> make mp-bench

cd mpbench; make mpi_bench

cc -fast -I/src/icl/MPI/mpich/include -DMPI -c mpbench.c -o mpbench.o

cc -fast mpbench.o -o mpi_bench -L/src/icl/MPI/mpich/lib/solaris/ch_p4 -lmpi -lsocket -1

3.3 Running MPBench

While MPBench can be run from the command line, it is designed to be run from via the
Makefile. Running it via the makefile automates the collection and presentation process.
By default, the makefile runs with the arguments -e 1 -i 100 -x 2 -m 16 and with 16
processes. This says that each size should be repeated only once, the iteration count should
be set to 100, two measurements are taken betwen every problem size value that is a power of
two, and the maximum problem size tested is 2'¢ bytes. You can change the default settings
by changing the variables in the make.def after you have configured the distribution.
When running MPI, sometimes it is required that you set up a hostfile containing the
names of the hosts on which to run the processes. If your installation requires a hostfile,
MPBench will tell you. If that happens, please check your mpirun man page for the format.
The resulting datafiles for each of the runs will be left in
mpbench/results/<0S>-<HOSTNAME> <API> <test>.dat.

kiwi> make mp-run

cd mpbench; make run

Latency test...

Roundtrip test...

Bandwidth test...

Bidirectional Bandwidth test...
Broadcast test...

Reduce test...

Allreduce test...

All-to-all test...

Datafiles are located in the mpbench/results directory.
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Now we plot the results with GNUplot. If GNUplot is not available on your system,
perform the following.

e Unpack the distribution on a machine that does.
e Copy your results files to the new machine in the MPBench directory.

e Execute make_graphs.sh with the common prefix of your datafiles.

Normally, we can make the graphs immediately.

kiwi> make mp-graphs

cd mpbench; make graphs

results/Sun0S-kiwi_mpi

Graphing results/Sun0S-kiwi_mpi_latency.dat...

Postscript graph is in results/Sun0S-kiwi_mpi_latency.ps.
Graphing results/Sun0S-kiwi_mpi_roundtrip.dat...

Postscript graph is in results/Sun0S-kiwi_mpi_roundtrip.ps.
Graphing results/Sun0S-kiwi_mpi_bandwidth.dat...

Postscript graph is in results/Sun0S-kiwi_mpi_bandwidth.ps.
Graphing results/Sun0S-kiwi_mpi_bibandwidth.dat...
Postscript graph is in results/Sun0S-kiwi_mpi_bibandwidth.ps.
Graphing results/Sun0S-kiwi_mpi_alltoall.dat...

Postscript graph is in results/Sun0S-kiwi_mpi_alltoall.ps.
Graphing results/Sun0S-kiwi_mpi_broadcast.dat...

Postscript graph is in results/Sun0S-kiwi_mpi_broadcast.ps.
Graphing results/Sun0S-kiwi_mpi_reduce.dat...

Postscript graph is in results/SunOS-kiwi_mpi_reduce.ps.
Graphing results/Sun0S-kiwi_mpi_allreduce.dat...

Postscript graph is in results/SunO0S-kiwi_mpi_allreduce.ps.

Graphs are located in the mpbench/results directory.

The graphs will be left in the results directory.
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4 Usage

Usage: (MPI implementation dependent portion) mpi_bench -blracyz [-i #] [-x #] [-m #] [-
-b Do bandwidth benchmark
-d Do bidirectional bandwidth benchmark
-1 Do latency benchmark
-r Do roundtrip benchmark
—-a Do all-to-all benchmark
—-c Do broadcast benchmark
-y Do reduce benchmark
-z Do allreduce benchmark
-1 Specify the iterations over which to average.
-x Specify the number of measurements between powers of 2.
-m Specify the log2(available physical memory) to be used
as the maximum message size.
-e Specify the repeat count per message size.
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5 Results on the CEWES MSRC Machines

The following section contains the graphs of each of the following machines.

5.1 Latency

Application Latency of MPI_Send at CEWES MSRC
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Figure 1: Application Latency of Send

In the figure 1 we see three interesting performance variations. First note the jump in
latency of the T3E when the message is greater than 64 bytes. This is likely due to space
allocated in the header exchanged between two processes. Many message passing systems
allocate space in the header for a small payload so only one exchange is required. Next we
note the jump in latency on the SP for messages larger than 4096 bytes. This is the point
where IBM’s MPI switches to a rendezvous protocol. This is tunable from the command line
for poe IBM’s version of mpirun with the -eagerlimit argument. It is also tunable with
the MP_EAGERLIMIT environment variable. We recommend setting this to 16384 bytes for all
runs. In fact, IBM does this when running parallel benchmarks. Lastly we note the falloff
in performance at 8MB on the T3E. This is found throughout all our communication graphs
and we are unable to explain it.
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5.2 Roundtrip

Roundtrip Time of MPI_Send at CEWES MSRC
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Figure 2: Roundtrip Time of Ping-Pong

For small messages, roundtrip time is largely dominated by protocol overheads and the
means to access the network. Notice in figure 2 that while both the link speed and the clock
speed for the T3E is higher than the Origin, the Origin still outperforms both machines
quite significantly. An inversion takes place at 8K messages between the Origin and the
T3E. We conclude that the Origin with its distributed shared memory hardware provides
a very lightweight method of accessing remote memory. 8K is the page size of the Origin
2000, so it is not surprising that a penalty is paid after crossing that boundary. At larger
messages, the raw link speed of the T3E clearly dominates, while the performance of the SP
and the Origin falters.
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5.3 Bandwidth

Bandwidth of MPI_Send at CEWES MSRC
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Figure 3: Bandwidth of Send

In figure 3, we note the dramatic effect of MPI’s rendezvous protocol. As mentioned, the
SP has a rather small limit of 4K, thus responsible for the falloff at larger message sizes.
The Origin and the T3E both have an eager limit set to 16K, with only the Origin suffering
a loss in performance at larger sizes. Also of interest is the effect that caching has on the
Origin. As mentioned, these tests are repeated a number of times, so most of the data will
lie in the Origin’s large 4MB level two cache. Note that for larger sizes, its performance
suffers severely.
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5.4 Broadcast

Performance of MPI_Bcast for 16 tasks at CEWES MSRC
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Figure 4: Broadcast Performance

For figure 4, we again note the dramatic drop-off found at the 8MB message size on the
T3E. For the Origin, we also notice the effect of cache. The user should be aware that this
test also includes the time for an acknowledge to be sent back to the master. Thus for 16
nodes, and assuming a binary tree distribution algorithm, we must wait for at least 1og2(16)
or 4 sends to complete before we receive our first acknowledgment.
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5.5 Reduce

Performance of MPI_Reduce for 16 tasks at CEWES MSRC
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Figure 5: Reduce Performance

In figure 5 we see the effects of cache and shared page size on the Origin. For the SP, the
dip at the 4K message size is again related to the rather small eager limit. It is clear that
MPI_Reduce on the SP is implemented in terms of MPI_Send at a lower level. Performance
of the T3E increases steadily and levels off around 20MB/sec. Notice the lack of a significant
falloff at larger messages on the T3E. Also notice how poorly the T3E performs in relation
to figure 4.

17



5.6 AllReduce

Performance of MPI_Allreduce for 16 tasks at CEWES MSRC

20000 .
Origin 2000, pagh —<—
IBM SP, osprey I
18000 Cray T3E, jiy g
-
-8 E B Oy
16000 e
= Y
14000 o e
i} A
F]ﬁ
12000 ‘ o
) R
o y
3 g
= 10000 ;
x .
8000 b
6000 5
o
4000 S AT SNV
Jai 3
2000 o g
e s o
e
0 [ =

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB
Message Size in bytes

Figure 6: AllReduce Performance

For figure 6, we again notice the dramatic effect caching has on the Origin with perfor-
mance falling off around the 4MB mark. Comparing this graph with that of figure 5, we note
that the SP2 and the T3E perform about twenty percent worse on Allreduce than on Re-
duce. The Origin performs more than thirty percent worse, which is perhaps an architectural
problem related to network contention.
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