The CacheBench Report

Philip J. Mucci

Kevin London

John Thurman
mucci@cs.utk.edu
london@cs.utk.edu
thurman@cs.utk.edu

November 1998

1 Introduction

CacheBench is a benchmark designed to evaluate the performance of the memory hierarchy of
computer systems. Its specific focus is to parameterize the performance of possibly multiple
levels of cache present on and off the processor. By performance, we mean raw bandwidth in
megabytes per second. Of interest to us is the ability of the cache to sustain large, unit-stride,
floating point workloads.

1.1 Cache Architecture

Caches are essentially very small, high speed memories designed to speed computation among
repeatedly accessed data. They are found on virtually all commercially available processors
from small sixteen bit embedded microprocessors to the large, multi-million transistor RISC
chips found in today’s workstations and supercomputers. Caches exploit both spatial and
temporal locality. Spatial locality is the concept that data items that are physically located
near each other in main memory will likely be accessed together. Temporal locality is the
concept that a data item that is frequently accessed will likely be accessed again in the near
future.

When the processor wishes to operate on an item from main memory, it issues a load to
the cache. If the item is resident in the cache, this is called a cache hit. If not, it is called a

cache miss, and the load request is forwarded to main memory, which moves the data from
main memory into a cache line. A detailed discussion of cache and processor architecture
is well beyond the scope of this paper, but interested readers are referred to Hennessey and
Patterson’s, Computer Architecture, A Quantitative Approach. An example in this textbook
serves as the basis for this benchmark.

1.2 Goals of CacheBench

The goal of this benchmark is to establish peak computation rate given optimal cache reuse
and to verify the effectiveness of high levels of compiler optimization on tuned and untuned
codes. Many scientific applications in use have significant resource requirements in terms of
memory footprint. High speedups of these applications are often achieved through exploiting
the cache. This is especially true given the widening gap between processor speed and main
memory. Thus, this benchmark will provide us with a good basis for application performance
modeling and prediction for those applications that have already been substantially tuned
for cache reuse.

2 How it works

CacheBench currently incorporates eight different benchmarks. Each one performs repeated
access to data items on varying vector lengths. Timings are taken for each vector length
over a number of iterations. Computing the product of iterations and vector length gives
us the total amount of data accessed in bytes. This total is then divided by the total time
to compute a bandwidth figure. This figure is in megabytes per second. Here we define a
Megabyte as being 10242 or 1048576 bytes. In addition to this figure, the average access
time in nanoseconds per each data item is computed and reported. The tests are as follows.

e Cache Read
e Cache Write

Cache Read/Modify/Write
Hand tuned Cache Read

Hand tuned Cache Write

e Hand tuned Cache Read/Modify/Write

e memset() from the C library

e memcpy() from the C library

The first six of these tests access their data through arrays of a predefined base type.
This type is set at compile time and defaults to double. The rationale for this is that some
systems perform memory access differently depending on the functional unit that generated
the miss. The default data-type can be altered by setting the USE_<type> compiler definition
in the Makefile. Currently USE_CHAR, USE_INT, USE_FLOAT and USE_DOUBLE are supported.

The first three of the tests are intended to provide us with information about how good
the compiler is. They are very straightforward consisting of only a few lines of code.

The second three are intended to reflect portable, tuned code as found in production
applications. Here, the optimizer has little opportunity to enhance the code, and in fact,
the numbers from these three tests often do not change very much given different levels of
optimization.

The last two tests are included as points of comparison. These routines are often heavily
used in C applications, but vary greatly in efficiency. One would expect high performance
out of these benchmarks in terms of memory bandwidth, but more often than not, the results
have been disappointing.

All of these benchmarks runs for a fixed amount of time, which is tunable at run-time.
The rationale for this is the widely varying performance of processors these days. BLASbench
intends to provide the user with relatively quick feedback about the memory performance of
the machine in use. However, this timing restriction limits the accuracy with which we can
report the results. A faster machine that runs the test for a higher number of iterations has
less relative error. This makes accurate, statistical analysis difficult but it will be fixed in
the next release.

2.1 Cache Read

This benchmark is designed to provide us with read bandwidth for varying vector lengths in
a compiler optimized loop. For the cases where the vector length is less than the cache size,
the data will come completely from cache and the resulting bandwidth will be much higher.

The pseudo code for this test is as follows:

for all vector length
timer start
for iteration count

for T = 0 to vector length
register += memory[I]
timer stop

2.2 Cache Write

This benchmark is designed to provide us with write bandwidth for varying vector lengths in
a compiler optimized loop. This benchmark is greatly affected by architectural peculiarities
in the memory subsystem. Replacement policy, associativity, blocking and write buffering
all play important factors in the performance of this benchmark. For example, a write-back
cache will show a much higher bandwidth because it frequently avoids unnecessary refer-
ences to main memory. In addition, many systems coalesce and buffer multiple writes to
cache/memory. This can hides much of the latency of the underlying hardware.

for all vector length
timer start
for iteration count
for T = 0 to vector length
memory[I] = register++
timer stop

2.3 Cache Read/Modify/Write

This benchmark is designed to provide us with read/modify/write bandwidth for varying
vector lengths in a compiler optimized loop. This benchmark generates twice as much mem-
ory traffic, as each data item must be first read from memory/cache to register and then back
to cache. Each direction of transfer is counted in the computation of bandwidth. Bandwidth
for this test is often a bit higher than the sum of the previous two tests. The benefit comes
from compilers’ ability to better schedule operations and group memory accesses to amortize
the cost of the store.

for all vector length
timer start
for iteration count
for T = 0 to vector length
memory [I]++
timer stop

2.4 Hand Tuned Versions

A full description of the hand tuned versions of these codes is beyond the needs of this paper.
However, to provide some background, the following optimizations were applied:

e Degree eight unrolling. Each loop now references eight memory elements instead of
one.

e Dependency analysis. Each operation is independent of the previous seven.

e Register re-use. Registers are allocated to memory locations and reused whenever
possible.

The optimizations reflect what a minimally good compiler should be doing on these simple
loops. In CacheBench, if we see our compiler loops not reaching the performance of our tuned
loops, we can conclude that our compiler is poor. The complexity of these loops is minimal
and any compiler should be able to optimize them. It is possible, that our compiler optimized
loops will outperform our hand-tuned loops, if the compiler inserts prefetching and coalesces
memory operations into block transfers.

2.5 Memory Set

The C library provides us with the function memset () to initialize regions of memory. This
function is often highly optimized as it is widely used both in and outside of the operating
system. Often, this function is either assembly code placed inline in the executable from a
header file, or it is an intrinsic function that the compiler recognizes and replaces automati-
cally. Some systems have additional hardware on chip to perform this operation, specifically
when the value to be set to is zero. This benchmark allows us to compare the numbers from
our two formulations of memory write with this version. More often than not, we find that
both versions outperform a call to this routine.

for all vector length
timer start
for iteration count
for I = 0 to vector length
memset (vectorl,0xf0,length)
timer stop

2.6 Memory Copy

The C library also provides us with the function memcpy() to copy regions of memory.
It is also usually an intrinsic or inline assembler function. This benchmark allows us to
compare the numbers from our two versions of memory read/modify/write with this version.
Frequently we find that memcpy () is not as fast as it should be. While this function may not
appear explicitly in Fortran application codes, it is used by many of the supporting libraries,
like MPI.

for all vector lengths
timer start
for iteration count
for T = 0 to vector length
memcpy(dest,src,vector length)
timer stop

3 Using CacheBench

3.1 Obtain the Distribution

BLASBench is now found in the LLCbench distribution. The latest release of LLCbench can
always be found through the original author’s homepage at
http://www.cs.utk.edu/~mucci

at its home page at

http://www.cs.utk.edu/~thurman/11lcbench

or via F'TP at

ftp://cs.utk.edu/ thurman/pub/llcbench.tar.gz.

Now unpack the installation using gzip and tar.

kiwi> gzip -dc llcbench.tar.gz | tar xvf -
kiwi> cd 1llcbench

kiwi> 1s
Makefile cachebench/ index.html mpbench/ sys.def@
blasbench/ conf/ make .def pix/

3.2 Build the Distribution

First we must configure the build for our machine, OS and BLAS libraries. All configurations
support the reference BLAS if available. Before configuration make with no arguments lists
the possible targets.

kiwi> make
Please use one of the following targets:

solaris sunosb

sun sunos4

sgi-o2k o2k

linux-mpich

linux-lam

alpha

t3e

pPpc ibm-ppc

pow2 ibm-pow2

reconfig (to bring this menu up again)

After configuration, please check the VBLASLIB variable in
sys.def and make sure that it is pointing to the vendor BLAS
library if one exists.

Configure the build. Here, we are on a Solaris workstation.
kiwi> make solaris

1n -s conf/sys.solaris sys.def

CacheBench’s default runtime variable values are contained in the file make.def and may
be modified there.

3.3 Building CacheBench

kiwi> make cache-build
cd cachebench; make cachebench

cc -fast -dalign -DREGISTER -DUSE_DOUBLE -c cachebench.c
cc -DUSE_DOUBLE -o cachebench cachebench.o

3.4 Running CacheBench

While CacheBench can be run from the command line, it is designed executed through use
of the Makefile. The resulting datafiles for each of the runs will be left in the file:
results/<test>-<HOSTNAME>-<DATATYPE>.dat.

kiwi> make cache-run
Measuring Read...
Measuring Write...
Measuring RMW...
Measuring Tuned Read...
Measuring Tuned Write...
Measuring Tuned RMW...
Measuring memcpy(Q)...
Measuring memset()...

[commands deleted for brevity].

3.5 CacheBench results

make cache-graphs will attempt to graph the results. The datafiles willl be tarred into a file

called cacheperf-<HOSTNAME>-<DATATYPE>.tar. The Makefile will then attempt to graph

the results. If GNUPlot is not available on this system, simply copy cacheperf-<HOSTNAME>-<DATATYPE> . ta
to another machine that has GNUPlot, extract the tar file and process each GNUPlot script

file with gnuplot < <HOSTNAME>.gp > <file>.ps.

kiwi> make cache-graphs
cd cachebench; make graphs

X=‘uname -n‘; cd results; gnuplot < $X.gp > cacheperf-$X-DOUBLE.ps

If you don’t have GNUplot, you can make the graphs on another machine
using the cachebench/results/cacheperf-cetus3b-DOUBLE.tar file.

3.6 Arguments to CacheBench

This is the CacheBench arguement list from the command line help. The defaults listed are
for direct execution of the benchmark (not the defaults for execution through the makefile).

Usage: cachebench -rwbtsp [-x #] [-m #] [-d #] [-e #]

-r

Read benchmark

Write benchmark

Read/Modify/Write benchmark

Use hand tuned versions of the above

memset () benchmark

memcpy () benchmark

Number of measurements to take between powers of 2
Specify the log base 2 of the available physical memory
Number of seconds per iteration

Number of times to repeat test for each vector size

Datatype used is double, 8 bytes

Defaults if
Defaults if

tty: -rwbsp -x1 -m24 -d5 -e2
file: -b -x1 -m24 -d5 -el

Note the fact that the defaults are different depending on whether or not the output is
directed to a TTY or a file. Again, the best way to run cachebench is with the Makefile.

4 Results on the CEWES MSRC Machines

The following graphs are taken from our runs on each of the CEWES MSRC machines during
dedicated time. Those machines are the SGI Origin 2000, the IBM SP and the Cray T3E.
The cache size and theoretical peak MFLOPS for each machine are listed as follows. The
peak MFLOPS is as reported by the vendor and is simply computed as a product of the
clock speed times the number of independent FMA’s that can be computed per cycle.

Machine Cache Peak
SGI Origin 2000 | 32K,4MB 390
IBM SP 128K 240
Cray T3E 8K,96K 900

10

4.1 Cache Reads

Cache Performance of read at CEWES MSRC
1400 T

D_,,B‘U"~E[E';?F:n”'m:r?“B'D”ﬂ“[] CrayT3E, jim -
e AT \ : Origin 2000, pagh —+--
=7 \ : IBM SP, osprey -&--
1200 = ! :
R *
ja)
1000 § /+ +- | et At e oo it a8 wip
£
800 [
& B-8-38- 08 .g.0. 5% o080
= it
600
400
/;k\\
+ S
200
S
0
256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

Vector Length in bytes

Figure 1: Performance of Compiler Optimized Memory Read

In figures 1 and 2, we notice that the read performance of the Cray T3E is much lower
for the hand-tuned version. For the compiler optimized version, we find a two to threefold
improvement for vector sizes that lie in cache. The Cray compiler seems to have a very
difficult time recognizing what optimized code is doing. This means that tuned applications
ported to the Cray might not perform very well. For the SP2 and the Origin 2000, the only
difference we find is the steepness of the portion of the curve lying substantially below the
cache size. Here, we are seeing the overhead of the compiler’s code that handles the special
cases where the vector length is not a multiple of the degree of unrolling. In the tuned
version, this residual code does not exist and thus there are no branches in the underlying
assembly language. The SP has a hardware loop capability allowing zero cycle branches.
For the hand-tuned version, there is no residual code, so the compiler simply sets up the
hardware loop and lets it run with no overhead. Thus, we see no performance falloff at
smaller vector lengths.

11

1400

Cache Performance of Hand-Tuned Read at CEWES MSRC
T
- T ‘ ‘ b AN Cray T3E, jim —<—
B ! IBM SP, osprey -+--
g ! i Origin 2000, pagh -&--
1200 =g ; :
jul | |
o xl !
1000 | !
800 m‘E}-D"[}'—\P-{]'-'E}'B'»'B'—Q
g * .
%) Food T
o) |
= |
600 B
[
400
\D"E"'B"'E}' n
200
b—o0——0—<¢
TN
256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB
Vector Length in bytes

Figure 2: Performance of Hand-tuned Memory Read

12

4.2 Cache Writes

Cache Performance of write at CEWES MSRC

3000 ;
Cray T3E, jim -—
. Origin 2000, pagh -+--
/e/@’*"ﬁ'{\e/ IBM SP, osprey -8--
2500
B .[j»-B-BE‘[J-E\
2000 GO I ‘o
x| L
i :
o ‘:
3 o’ :
= 1500
s B B SIS
i+
1000
500 L T S S S R s e
\iiar—ﬂr[}-ﬂ-{jr-rara—r—ﬂ\—[}rrB-E»r-gr h

0
256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB
Vector Length in bytes

Figure 3: Performance of Compiler Optimized Memory Write

In figures 3 and 4, we can see that the performance of the compiler optimized loop is
equal to or greater than that of the hand tuned loop as is the case for reads. The reader
will notice that for vectors residing completely in L1 cache, the write bandwidth is equal to
or greater than the read bandwidth. On the Origin, the L2 cache is significantly slower to
write to than to read from. We infer that the compiler is probably prefetching on the read
case and that there is inadequate pipelining between L2 cache and memory. For the T3E,
we again notice how poorly the compiler does on the optimized code.

13

MB/Sec

2200

Cache Performance of Hand-Tuned Write at CEWES MSRC

2000

e s e IS B

Cray T3E, jim —<—

1800

IBM SP, osprey -+--
Origin 2000,

pagh -68--

1600 2

1400 }

1200

8

7»[}_,57{]-“ -

1000

800

600

400

[ing
4
1]
b
g
4
e

200

\M—E,,,

0
256 512 1K

o

2K

4K

8K 16K 32K 64K 128K 256K 512K 1MB
Vector Length in bytes

4MB

Figure 4: Performance of Hand-tuned Memory Write

14

16MB

4.3 Cache Read/Modify/Write

Cache Performance of rmw at CEWES MSRC

2500 T
9/@/@/9’{ Cray T3E, jim <—
}/e/ O Tl A SR Origin 2000, pagh -+
R 7 IBM SP, osprey -6--
o :
Ja]
2000 S
,D
/D/
R
1500 ‘
I B - ;
o) i
1] :
) :
= :
1000 ;
L SR LN N S
Gg- 8 B8 Fneg g--8-8-- 0
500 :
B |
0
256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

Vector Length in bytes

Figure 5: Performance of Compiler Optimized Memory Read/Modify/Write

Of interest in figureb and 6 is the difference in performance of the IBM SP. Note that
in the hand-tuned version, performance averages about six hundred megabytes per second
better than that of the compiler optimized version. In the tuned version, the compiler is
probably scheduling/aggregating memory access into double-word loads and stores, a unique
feature of this architecture. This probably happens in the compiler optimized version, but
the fact that the compiler must also unroll the loop and optimize register usage seems to
complicate its analysis. Also of interest is the better performance on the T3E in level two
cache for the untuned version. Software pipelining, the mixing instructions from one iteration
to another may be aiding this code to hide the latency of the level two cache misses. We are
seeing this behavior in the case for reads and writes as well.

15

Cache Performance of Hand-Tuned RMW at CEWES MSRC
3000 T
Cray T3E, jim —-—
[T N I IBM SP, osprey -+--
‘F,«—»)r**/’%" L - TR Origin 2000, pagh -B--
2500 S :
2000 '
3 a
3 \
g 1500 \
= »»B,G,NBVE]~E—'[]-'—B'B'-'EF'E]—'E-'[; ‘.‘
]_,,B’U' A“‘
1000 :
B0 J‘rTET R L |
ERNE CE .
558
500
O--O-=--8-4
o4
256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB
Vector Length in bytes

16MB

Figure 6: Performance of Hand-tuned Memory Read/Modify /Write

16

4.4 memset ()

Cache Performance of memset() at CEWES MSRC

1200 T
’_E,U-'D'Uma Cray T3E, jim ——
g i IBM SP, osprey -+--
o Origin 2000, pagh -&--
1000 A

800 [i Tosp
ul % ' !

+ : |

‘/' \

|

\

\

\

|

:

+ '
() 600 |-+ o,
& :
s m
s = R SO - - N S
\ \‘\
400 S S SRS SR
8.5 .
200
0
256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

Vector Length in bytes

Figure 7: Performance of memset ()

4.5 memcpy()

Figures 7 and 8 are provided as reference. The performance of these two routines, when
compared with the write and read-modify-write benchmark, clearly indicates that the user
would be better off using a typed version coded in C or Fortran rather than these library calls.
The reason for this is that they are often coded at the byte level for maximum flexibility,
not performance. By knowing the type and the alignment of the data ahead of time, the
user could easily write a simple loop, let the compiler optimize it and still see much better
performance. The only exception is the case where the vector is smaller than L2 cache on
the T3E.

17

MB/Sec

Cache Performance of memcpy() at CEWES MSRC

4000 ,
Cray T3E, jim —<—
] IBM SP, osprey —+-
3500 Qrigin 2000, pagh -3--
3000
2500
2000
1500
L N
1000 = :
o T N A S e Bt S
1":4”"/ \\\
o,
500 \Lj»'-n\u'wjru—r—ﬁ o B e ey oy bt
\®\< B opgogd
0
256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

Vector Length in bytes

Figure 8: Performance of memcpy ()

18

5 Future work

e Provide option for measuring specific vector lengths.

e Use specialized, high-resolution timers where available.

e Add benchmark for pointer traversal to measure latency of cache hit and miss.
e Add parameters to tune the placement and padding of the vectors.

e Change from constant run-time to constant iterations.

e Add unoptimized, untuned case for a baseline.

e Standardize configuration with GNU autoconf.

e Grab machine configuration and store it with each run.

e Standardize data/graph naming scheme with timestamp.

6 References

Computer Architecture, A Quantitative Approach by David A. Patterson, John L. Hen-
nessy, David Goldberg, Softcover, 1050 Pages, Published by Morgan Kaufmann Publishing,
01/1996, ISBN: 1558603298

The Science of Computer Benchmarking (Software, Environments, Tools) by Roger W. Hock-
ney, Softcover, 600 Pages, Published by Society for Industrial and Applied, 6/1996, ISBN:
0898713633

19

